
Zhiqiang Xie†*
Joint work with 

Minjie Wang*, Zihao Ye*, Zheng Zhang* and Rui Fan†
† ShanghaiTech University * AWS

Graphiler: Optimizing Graph Neural Networks 
with Message Passing Data Flow Graph



Graph and Graph Neural Networks

Social Network Molecular Knowledge Graph

Image source: AWS Partner Network Blog, Stanford CS224W notes

𝑎𝑎𝑎
𝑎𝑎𝑎
𝑎𝑎𝑎
…

𝑑𝑑𝑑
𝑑𝑑𝑑
𝑑𝑑𝑑
…

𝑏𝑏𝑏
𝑏𝑏𝑏
𝑏𝑏𝑏
…

𝑐𝑐𝑐
𝑐𝑐𝑐
𝑐𝑐𝑐
…

Graphs are ubiquitous in real world!

Graph neural networks combine graph 
data structures and neural networks



Message passing in three stages

Message creation:

Message aggregation:

Feature update:

Message Passing Paradigm



Message passing paradigm defines 
fine-grained graph computation
• Edge-wise: how to send message
• Node-wise: how to use message

DL frameworks provides coarse-grained
tensor computation
• Operators: how to transform tensors

Gap between GNNs and DNN frameworks



• Intuitive and straightforward translation from math formula to code
• Less efficient owing to implicit conversion from irregular graph computation 

to fixed-shape dense tensor computation by duplicating, sharding, etc.
• Good for fast prototyping 

Simplified GCN: Implementation in DGL-UDF

User-Define Function (UDF)



• Efficient sparse computation primitives,
10x – 100x faster than UDFs!

• Hard to use!
• Suitable for performance critical scenarios

DGL-Primitives of GAT: DGL-UDF of GAT:

Specialized Primitives



Key idea:
Build a compiler stack to bridge the gap between UDFs and primitives

Can existing DNN compilers help?

Compile!

Performance Flexibility

UDFPrimitives

Goal: Bridge the Gap!



• High memory consumption
• Excessive intermediate data 

materialization

• Redundant computation 
and memory access

What Makes UDF Slow: Redundancy
From Heterogeneous Graph Transformer (HGT):



Degree = 3

Messages on edges

Degree = 1

Degree = 2
Features on nodes

…

Bucketing

…

Aggregation Merge

• Significant function call overhead
• Low hardware utilization
• Extra memory traffic

What Makes UDF Slow: Fragmentation



Yes! Many components are reusable
(e.g., parsing programs to build data flow graphs)

No! Message passing operations are translated to 
opaque operators

• Infeasible to describe certain computational 
patterns

• Prohibit further specific optimizations

Can Existing DNN Compilers help?

h

Wk

batch_mm
k

broadcast

broadcast



h

Wk

batch_mm
k

broadcast

broadcast

dense opbroadcast op

node type datanode data edge data

Data residency: where do data reside (e.g., 
nodes, edges, types)?

Data movement: how do data move between 
entities in a graph?

Insight: In the message passing paradigm, many 
computation-heavy patterns are tied to data 
residency changes

Message Passing Data Flow Graph (MP-DFG)

Observation: Data Residency and Movement



Type Inference & Annotation

• Annotation propagation
• Automatically replace fragmented 

message aggregation with efficient primitives
...
Check out paper for more details!

GAT in DGL-UDF

MP-DFG of GAT

MP-DFG Builder



h

Matmul

edge.src

dense opbroadcast op

shared datanode data edge data

W
𝑂𝑂(𝐸𝐸 ∗ 𝐷𝐷2)

h

Matmul edge.src
W

𝑂𝑂(𝑁𝑁 ∗ 𝐷𝐷2)
Broadcast 

Reordering

𝑦𝑦 = 𝑓𝑓 𝑔𝑔 𝑥𝑥 → 𝑦𝑦 = 𝑔𝑔(𝑓𝑓(𝑥𝑥))

Optimization enabled: Broadcast Reordering



dense opbroadcast op

shared datanode data edge data

reduce op fused op

Edge type data

*

Broadcast 
Fusion

𝑧𝑧 = 𝑓𝑓 𝑔𝑔 𝑥𝑥 ,𝑦𝑦 → 𝑧𝑧 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑥𝑥,𝑦𝑦
𝑧𝑧 = 𝜌𝜌(𝑓𝑓 𝑔𝑔 𝑥𝑥 ,𝑦𝑦 ) → 𝑧𝑧 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥,𝑦𝑦)

…

z z

r
r

W_msg W_msg
m m

vv batch_mm

alpha alphasum

edges.type

edge.src

Optimization enabled: Broadcast Fusion



Graphiler as a Compiler Stack

• Check out the paper and code for more details!
https://github.com/xiezhq-hermann/graphiler

https://github.com/xiezhq-hermann/graphiler


• 231× (GCN), 243× (GAT) and 80× (C-GAT) faster on average over all the datasets 
compared with DGL-UDF baselines

• Comparable performance and often faster than DGL-primitives, PyG-primitives and Seastar
• Significant memory saving

End-to-end Performance of Homogeneous GNNs



• 78× (DGL-UDF), 21× (DGL-slice), 16× (PyG-slice), 3.6× (DGL-batch) and 4.2× (PyG-batch)
faster on average across all benchmarks for R-GCN.

• Enables models running in large datasets by substantial memory saving

End-to-end Performance of Heterogenous GNNs 



Programming GNNs faces a performance and flexibility trade-off 
Graphiler achieves the best of both worlds using a compiler approach

GNNs introduce unique computational patterns
A tailored abstraction MP-DFG is needed to enable better performance

It is possible to unify computational abstraction for homogeneous and heterogenous GNNs
How about user interfaces? How about abstraction for kernel generation?

DGL team is integrating Graphiler into its official release.
More GNN compilation projects from AWS are to come!

Questions or comments?

Key Takeaways & Future Work


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

